Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.938
Filtrar
1.
Hepatol Int ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622445

RESUMO

BACKGROUND: To investigate whether protein induced by vitamin K antagonist-II (PIVKA-II) combined with alpha-fetoprotein (AFP) can improve the diagnostic and differential diagnostic accuracy of childhood hepatic tumors. METHODS: A multi-center prospective observational study was performed at nine regional institutions around China. Children with hepatic mass (Group T) were divided into hepatoblastoma group (Group THB) and hemangioendothelioma group (Group THE), children with extrahepatic abdominal mass (Group C). Peripheral blood was collected from each patient prior to surgery or chemotherapy. The area under the curve (AUROC) was used to evaluate the diagnostic efficiency of PIVKA-II and the combined tumor markers with AFP. RESULTS: The mean levels of PIVKA-II and AFP were both significantly higher in Group T than Group C (p = 0.001, p < 0.001), in Group THB than Group THE (p = 0.018, p = 0.013) and in advanced HB than non-advanced HB (p = 0.001, p = 0.021). For the diagnosis of childhood hepatic tumors, AUROC of PIVKA-II (cut-off value 32.6 mAU/mL) and AFP (cut-off value 120 ng/mL) was 0.867 and 0.857. The differential diagnostic value of PIVKA-II and AFP in hepatoblastoma from hemangioendothelioma was further assessed, AUROC of PIVKA-II (cut-off value 47.1mAU/mL) and AFP (cut-off value 560 ng/mL) was 0.876 and 0.743. The combined markers showed higher AUROC (0.891, 0.895 respectively) than PIVKA-II or AFP alone. CONCLUSIONS: The serum level of PIVKA-II was significantly higher in children with hepatic tumors, especially those with malignant tumors. The combination of PIVKA-II with AFP further increased the diagnostic performance. TRIAL REGISTRATION: Clinical Trials, NCT03645655. Registered 20 August 2018, https://www. CLINICALTRIALS: gov/ct2/show/NCT03645655 .

2.
RSC Adv ; 14(17): 12049-12057, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38628489

RESUMO

A novel sustained chlorine-releasing polydimethylsiloxane/Ca(ClO)2 (PDMS/Ca(ClO)2) material was fabricated by encapsulating Ca(ClO)2 in a PDMS matrix due to its high hydrophobicity and high chemical stability, which showed immediate-responsive and long-lasting antibacterial capabilities in aqueous conditions. Free chlorine could be released from the PDMS/Ca(ClO)2 after immersion in water for 2 min and could also be sustainedly released for 2 weeks, while the released concentration is negatively related to the duration time and positively with the initial Ca(ClO)2 contents. Additionally, Ca(ClO)2 powder as a filler significantly affects the crosslinking and pore size of PDMS. The PDMS/Ca(ClO)2 materials exhibited enduring antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in both planktonic and multispecies-biofilm status. It is expected that this PDMS/Ca(ClO)2 material and its similar composite would be promising candidates for wide sustainable disinfection applications in biomedical and industrial fields.

4.
Apoptosis ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573492

RESUMO

Oxaliplatin resistance poses a significant challenge in colorectal cancer (CRC) therapy, necessitating further investigation into the underlying molecular mechanisms. This study aimed to elucidate the regulatory role of SNHG4 in oxaliplatin resistance and ferroptosis in CRC. Our findings revealed that treatment with oxaliplatin led to downregulation of SNHG4 expression in CRC cells, while resistant CRC cells exhibited higher levels of SNHG4 compared to parental cells. Silencing SNHG4 attenuated oxaliplatin resistance and reduced the expression of resistance-related proteins MRD1 and MPR1. Furthermore, induction of ferroptosis effectively diminished oxaliplatin resistance in both parental and resistant CRC cells. Notably, ferroptosis induction resulted in decreased SNHG4 expression, whereas SNHG4 overexpression suppressed ferroptosis. Through FISH, RIP, and RNA pull-down assays, we identified the cytoplasmic localization of both SNHG4 and PTEN, establishing that SNHG4 directly targets PTEN, thereby reducing mRNA stability in CRC cells. Silencing PTEN abrogated the impact of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells. In vivo experiments further validated the influence of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells through PTEN regulation. In conclusion, SNHG4 promotes resistance to oxaliplatin in CRC cells by suppressing ferroptosis through instability of PTEN, thus serves as a target for patients with oxaliplatin-base chemoresistance.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38643424

RESUMO

PURPOSE: To evaluate and compare the effect of decentration and tilt on the optical quality of monofocal and trifocal intraocular lenses (IOL). METHODS: Optical quality of a monofocal IOL (AcrySof IQ SN60WF; Alcon Laboratories, Inc., USA) and a trifocal IOL (AcrySof IQ PanOptix; Alcon Laboratories, Inc., USA) was assessed using an in vitro optical bench (OptiSpheric IOL R&D; Trioptics GmbH, Germany). At apertures of 3.0 mm and 4.5 mm, modulation transfer function (MTF) at spatial frequency of 50 lp/mm, MTF curve and the United States Air Force (USAF) resolution test chart of the two IOLs were measured and compared at their focus with different degrees of decentration and tilt. Optical quality at infinity, 60 cm and 40 cm and the through-focus MTF curves were compared when the two IOLs were centered at apertures of 3.0 mm and 4.5 mm. Spectral transmittance of the two IOLs was measured by the UV-visible spectrophotometer (UV 3300 PC; MAPADA, China). RESULTS: The SN60WF and the PanOptix filtered blue light from 400 to 500 nm. Both IOLs at the far focus and the PanOptix at the intermediate focus showed a decrease in optical quality with increasing decentration and tilt. The PanOptix demonstrated enhanced optical quality compared to the previous gradient at the near focus at a decentration range of 0.3-0.7 mm with a 3.0 mm aperture, and 0.5 mm with a 4.5 mm aperture, whereas other conditions exhibited diminished optical quality with increasing decentration and tilt at the focus of both IOLs. When the two IOLs were centered, the SN60WF had better optical quality at infinity, while the PanOptix had better optical quality at 60 cm and 40 cm defocus. The optical quality of the SN60WF exceeded that of the PanOptix at far focus, with a 3 mm aperture decentration up to 0.7 mm and a 4.5 mm aperture decentration up to 0.3 mm; this observation held true for all tilts, irrespective of aperture size. As both decentration and tilt increased, the optical quality of the SN60WF deteriorated more rapidly than that of the PanOptix at the far focal point. CONCLUSIONS: The SN60WF showed a decrease in optical quality with increasing decentration and tilt. Optical quality of the PanOptix at the near focus increased in some decentration conditions and decreased in some conditions, while it showed a decrease at the other focuses with increasing decentration. While tilt only had a negative effect on optical quality. When both IOLs were centered, the PanOptix provided a wider range of vision, while the SN60WF provided better far distance vision. At the far focus, the SN60WF has better resistance to tilt than the PanOptix, but the optical quality degrades more quickly when decentered and tilted.

6.
Acta Biomater ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570106

RESUMO

Ferroptosis has emerged as a promising strategy for treating triple-negative breast cancer (TNBC) due to bypassing apoptosis and triggering immunogenic cell death (ICD) of tumor cells. However, the antitumor efficacy has been limited by the insufficient intracellular ferrous iron concentration required for ferroptosis and inadequate antitumor immune response. To address these limitations, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which exhibited a synergistic effect of ferroptosis, apoptosis and induced immune response for enhanced antitumor therapy. MP-FA@R-F NPs target folate receptors, which are over-expressed on the tumor cell's surface to promote intracellular uptake. The cargoes, including Rhein and Fe3O4, would be released in intracellular acid, accelerating by NIR laser irradiation. The released Rhein induced apoptosis of tumor cells mediated by the caspase 3 signal pathway, while the released Fe3O4 triggered ferroptosis through the Fenton reaction and endowed the nanoplatform with magnetic resonance imaging (MRI) capabilities. In addition, ferroptosis-dying tumor cells could release damage-associated molecular patterns (DAMPs) to promote T cell activation and infiltration for immune response and induce immunogenic cell death (ICD) for tumor immunotherapy. Together, MP-FA@R-F NPs represent a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy. STATEMENT OF SIGNIFICANCE: The massive strategies of cancer therapy based on ferroptosis have been emerging in recent years, which provided new insights into designing materials for cancer therapy. However, the antitumor efficacy of ferroptosis is still unsatisfactory, mainly due to insufficient intracellular pro-ferroptotic stimuli. In the current study, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which represented a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy.

7.
Biochem Pharmacol ; : 116229, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643904

RESUMO

Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.

8.
Biomaterials ; 308: 122558, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581764

RESUMO

Mesenchymal stem cell (MSC)-based therapy is an effective strategy for regenerative therapy. However, safety and ease of use are still issues to be overcome in clinical applications. Exosomes are naturally derived nanoparticles containing bioactive molecules, which serve as ideal cell-free therapeutic modalities. However, issues such as delivery, long-term preservation and activity maintenance of exosomes are other problems that limit their application. In this study, we proposed the use of rapid freeze-dry-thaw macroporous hydrogels for the encapsulation of HucMSC-derived exosomes (HucMSC-Exos) combined with an antimicrobial peptide coating. This exosome-encapsulated hyaluronic acid macroporous hydrogel HD-DP7/Exo can achieve long-term storage and transport by lyophilization and can be rapidly redissolved for treatment. After comprehensively comparing the therapeutic effects of HucMSC-Exos and HucMSC-loaded hydrogels, we found that HucMSC-Exos could also effectively regulate fibroblasts, vascular endothelial cells, and macrophages and inhibit myofibroblast-mediated fibrosis, thus promoting tissue regeneration and inhibiting scar formation in a mouse model of deep second-degree burn infection healing. These properties of lyophilized storage and whole-process-repair make HD-DP7/Exo have potential application value and application prospects.

9.
J Agric Food Chem ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491972

RESUMO

Objectives: The aim of this study was to investigate the ameliorative effect of platycodin D (PD) on cognitive dysfunction in type 2 diabetes mellitus (T2DM) and its potential molecular mechanisms of action in vivo and in vitro. Materials and methods: An animal model of cognitive impairment in T2DM was established using a single intraperitoneal injection of streptozotocin (100 mg/kg) after 8 weeks of feeding a high-fat diet to C57BL/6 mice. In vitro, immunofluorescence staining and Western blot were employed to analyze the effects of PD on glucose-induced neurotoxicity in mouse hippocampal neuronal cells (HT22). Results: PD (2.5 mg/kg) treatment for 4 weeks significantly suppressed the rise in fasting blood glucose in T2DM mice, improved insulin secretion deficiency, and reversed abnormalities in serum triglyceride, cholesterol, low-density lipoprotein, and high-density lipoprotein levels. Meanwhile, PD ameliorated choline dysfunction in T2DM mice and inhibited the production of oxidative stress and apoptosis-related proteins of the caspase family. Notably, PD dose-dependently prevents the loss of mitochondrial membrane potential, promotes phosphorylation of phosphatidylinositol 3 kinase and protein kinase B (Akt) in vitro, activates glycogen synthase kinase 3ß (GSK3ß) expression at the Ser9 site, and inhibits Tau protein hyperphosphorylation. Conclusions: These findings clearly indicated that PD could alleviate the neurological damage caused by T2DM, and the phosphorylation of Akt at Ser473 may be the key to its effect.

10.
Food Sci Nutr ; 12(3): 2068-2080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455195

RESUMO

Studies suggest that mangiferin (MAF) has good therapeutic effects on chronic bronchitis and hepatitis. Also, it is one of the antiviral ingredients in Anemarrhena asphodeloides Bunge. However, its effect on the LPS-induced inflammation and intestinal flora during sepsis remains unclear yet. In the present study, LPS-stimulated inflammation RAW264.7 cells and LPS-induced sepsis mice were used to evaluate the efficacy of MAF in vitro and in vivo. 16S rDNA sequencing was performed to analyze the characteristics of intestinal flora of the sepsis mice. It has been demonstrated that MAF (12.5 and 25 µg/mL) significantly inhibited protein expressions of TLR4, MyD88, NF-κB, and TNF-α in the LPS-treated cells and reduced the supernatant TNF-α and IL-6 levels. In vivo, MAF (20 mg/kg) markedly protected the sepsis mice and reduced the serum TNF-α and IL-6 levels. Also, MAF significantly downregulated the protein expressions of TLR4, NF-κB, and MyD88 in the livers. Importantly, MAF significantly attenuated the pathological injuries of the livers and small intestines. Further, MAF significantly increased proportion of Bacteroidota and decreased the proportions of Firmicutes, Desulfobacterota, Actinobacteriota, and Proteobacteria at phylum level, and it markedly reduced the proportions of Escherichia-Shigella, Pseudoalteromonas, Staphylococcus at genus level. Moreover, MAF affects some metabolism-related pathways such as citrate cycle (TCA cycle), lipoic acid metabolism, oxidative phosphorylation, bacterial chemotaxis, fatty acid biosynthesis, and peptidoglycan biosynthesis of the intestinal flora. Thus, it can be concluded that MAF as a treatment reduces the inflammatory responses in vitro and in vivo by inhibiting the TLR4/ MyD88/NF-κB pathway, and corrects intestinal flora imbalance during sepsis to some degree.

11.
Int J Med Sci ; 21(4): 690-702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464829

RESUMO

Hyperoside is a natural flavonol glycoside widely found in plants and has been reported to have a variety of pharmacological effects, including anticancer abilities. In this study, we demonstrated for the first time that hyperoside inhibited the proliferation of bladder cancer cells in vitro and in vivo. Moreover, hyperoside could not only induce cell cycle arrest, but also induce apoptosis of a few bladder cancer cells. Quantitative proteomics, bioinformatics analysis and Western blotting confirmed that hyperoside induced the overexpression of EGFR, Ras and Fas proteins, which affects a variety of synergistic and antagonistic downstream signaling pathways, including MAPKs and Akt, ultimately contributing to its anticancer effects in bladder cancer cells. This study reveals that hyperoside could be a promising therapeutic strategy for the prevention of bladder cancer.


Assuntos
Quercetina/análogos & derivados , Transdução de Sinais , Neoplasias da Bexiga Urinária , Humanos , Pontos de Checagem do Ciclo Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Apoptose , Carcinogênese/genética , Receptores ErbB/genética , Proliferação de Células , Linhagem Celular Tumoral
12.
Cancer Med ; 13(7): e7117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545812

RESUMO

BACKGROUND: In recent years,the lack of specific markers for the diagnosis of colorectal cancer has led to an upward trend in both morbidity and mortality from this condition. There is an urgent need to identify molecular biomarkers that contribute to early cancer detection. This study aimed to identify specific exosomal microRNAs that hold potential as diagnostic biomarkers for CRC. METHODS: We screened for differentially expressed miRNAs using the CRC exosome dataset GSE39833. To validate the results in the public database, we collected serum from 168 CRC patients and 168 healthy volunteers. The expression levels of exosomal miR-1470 in healthy volunteers and CRC patients were analyzed using qRT-PCR. To evaluate the diagnostic potential of the selected miR-1470 in distinguishing CRC patients from healthy controls, we analyzed its receiver operating characteristic curve. To explore the biological functions of miR-1470 in CRC cell lines, we detected the miR-1470's ability to regulate the growth and metastasis of CRC cells by CCK8, transwell and other assays after transfection of miR-1470 in SW480, HCT-116 cells. RESULTS: Exosomal miR-1470 exhibited significant up-regulation in CRC patients compared to healthy volunteers. The ROC curve analysis revealed an area under the curve (AUC) of 0.74 (95% confidence interval: 0.6876-0.7920) for exosomal miR-1470, indicating its potential as a diagnostic biomarker. Furthermore, the expression level of miR-1470 in CRC patients showed correlations with age, metastasis, and HDL content. We overexpressed miR-1470 in CRC cell lines. CCK8 proliferation assay showed that miR-1470 promoted the proliferation ability of SW480 and HCT-116 cells. Transwell assay showed that miR-1470 promoted the migration and invasion ability of SW480 and HCT-116 cells. CONCLUSION: This suggested that non-invasive diagnosis of CRC is possible by detecting the level of miR-1470 in exosomes, which has important implications for early detection and treatment of this disease.


Assuntos
Neoplasias Colorretais , Exossomos , MicroRNAs , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , MicroRNAs/metabolismo , Células HCT116 , Proliferação de Células , Exossomos/metabolismo
13.
Clin Transl Sci ; 17(3): e13757, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488426

RESUMO

The cardiovascular (CV) safety of febuxostat compared to allopurinol for the treatment of hyperuricemia among Asian patients is uncertain. In this study, we conducted a systematic review and meta-analysis to compare the CV safety profiles of febuxostat with allopurinol in Asian patients with hyperuricemia. A total of 13 studies were included. On the basis of the pooled results of cohort studies, febuxostat users were at a significantly higher risk for acute coronary syndrome (ACS; hazard ratio [HR]: 1.06, 95% confidence interval [CI]: 1.03-1.09, p < 0.01), atrial fibrillation (HR: 1.19, 95% CI: 1.05-1.35, p < 0.01) than allopurinol users, whereas no significant difference between febuxostat and allopurinol existed for urgent coronary revascularization (HR: 1.07, 95% CI: 0.98-1.16, p = 0.13), and stroke (HR: 0.96, 95% CI: 0.91-1.01, p = 0.13). Nevertheless, that difference in results of acute decompensated heart failure (ADHF; HR: 0.73, 95% CI: 0.35-1.53, p = 0.40) and all-cause death (HR = 0.86, 95% CI: 0.49-1.51, p = 0.60) was not significant based on randomized controlled trials. In the Chinese subgroup, febuxostat could increase the risk of ADHF (HR: 1.22, 95% CI: 1.01-1.48, p < 0.05), CV death (HR: 1.25, 95% CI: 1.03-1.50, p < 0.05), and all-cause mortality (HR: 1.07, 95% CI: 1.01-1.14, p < 0.05) compared to allopurinol. In conclusion, the use of febuxostat, compared with allopurinol among Asian patients, was associated with a significantly increased risk of adverse CV events.


Assuntos
Doenças Cardiovasculares , Gota , Hiperuricemia , Humanos , Alopurinol/efeitos adversos , Febuxostat/efeitos adversos , Hiperuricemia/complicações , Hiperuricemia/tratamento farmacológico , Supressores da Gota/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Gota/tratamento farmacológico , Resultado do Tratamento
14.
Clin Transl Med ; 14(3): e1630, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509842

RESUMO

BACKGROUND AND AIMS: Liver regeneration retardation post partial hepatectomy (PH) is a common clinical problem after liver transplantation. Identification of key regulators in liver regeneration post PH may be beneficial for clinically improving the prognosis of patients after liver transplantation. This study aimed to clarify the function of junctional protein-associated with coronary artery disease (JCAD) in liver regeneration post PH and to reveal the underlying mechanisms. METHODS: JCAD knockout (JCAD-KO), liver-specific JCAD-KO (Jcad△Hep) mice and their control group were subjected to 70% PH. RNA sequencing was conducted to unravel the related signalling pathways. Primary hepatocytes from KO mice were treated with epidermal growth factor (EGF) to evaluate DNA replication. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) live-imaging system was used to visualise the phases of cell cycle. RESULTS: Both global and liver-specific JCAD deficiency postponed liver regeneration after PH as indicated by reduced gene expression of cell cycle transition and DNA replication. Prolonged retention in G1 phase and failure to transition over the cell cycle checkpoint in JCAD-KO cell line was indicated by a FUCCI live-imaging system as well as pharmacologic blockage. JCAD replenishment by adenovirus reversed the impaired DNA synthesis in JCAD-KO primary hepatocyte in exposure to EGF, which was abrogated by a Yes-associated protein (YAP) inhibitor, verteporfin. Mechanistically, JCAD competed with large tumour suppressor 2 (LATS2) for WWC1 interaction, leading to LATS2 inhibition and thereafter YAP activation, and enhanced expression of cell cycle-associated genes. CONCLUSION: JCAD deficiency led to delayed regeneration after PH as a result of blockage in cell cycle progression through the Hippo-YAP signalling pathway. These findings uncovered novel functions of JCAD and suggested a potential strategy for improving graft growth and function post liver transplantation. KEY POINTS: JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage. JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes. Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.


Assuntos
Moléculas de Adesão Celular , Regeneração Hepática , Transplante de Fígado , Animais , Humanos , Camundongos , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Regeneração Hepática/genética , Doadores Vivos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Moléculas de Adesão Celular/metabolismo
15.
Acad Radiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38548533

RESUMO

RATIONALE AND OBJECTIVES: Shear Wave Elastography (SWE) and Ultrasound-guided Diffuse Optical Tomography (US-guided DOT) demonstrate promise in distinguishing between benign and malignant breast lesions. This study aims to assess the feasibility and correlation of SWE and US-guided DOT in evaluating the biological characteristics of breast cancer. MATERIALS AND METHODS: A cohort of 235 breast cancer patients with 238 lesions, scheduled for surgery within one to three days, underwent B-mode ultrasound (US), US-guided DOT, and SWE. Parameters such as Total Hemoglobin Concentration (THC), Maximal Elasticity (Emax), Mean Elasticity (Emean), Standard Deviation of Elasticity (Esd), and Area Ratio were measured. Correlation with post-surgical pathology reports was examined to explore associations between THC, SWE Parameters, and pathology characteristics. RESULTS: Lesions in patient groups with ER-, PR-, HER2 + , high Ki67, LVI+ , and ALN+ exhibited higher THC, Emax, and Esd compared to groups with ER+ , PR+ , HER2-, low Ki67, LVI-, and ALN-. The increase was seen in all grades of IDC-I to -III. THC significantly correlated with Smax (r = 0.340, P < 0.001), Emax (r = 0.339, P < 0.001), Emean (r = 0.201, P = 0.003), and Esd (r = 0.313, P < 0.001). CONCLUSION: US-guided DOT and SWE prove valuable for the quantitative assessment of breast cancer's biological characteristics, with THC positively correlated with Emax, Emean, and Esd.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38485099

RESUMO

PURPOSE: Radiation-induced intestinal injury (RIII) commonly occur during abdominal-pelvic cancer radiation therapy; however, no effective prophylactic or therapeutic agents are available to manage RIII currently. This study aimed to clarify the potential of probiotic consortium supplementation in alleviating RIII. METHODS AND MATERIALS: Male C57BL/6J mice were orally administered a probiotic mixture comprising Bifidobacterium longum BL21, Lactobacillus paracasei LC86, and Lactobacillus plantarum Lp90 for 30 days before exposure to 13 Gy of whole abdominal irradiation. The survival rates, clinical scores, and histologic changes in the intestines of mice were assessed. The impacts of probiotic consortium treatment on intestinal stem cell proliferation, differentiation, and epithelial barrier function; oxidative stress; and inflammatory cytokines were evaluated. A comprehensive examination of the gut microbiota composition was conducted through 16S rRNA sequencing, while changes in metabolites were identified using liquid chromatography-mass spectrometry. RESULTS: The probiotic consortium alleviated RIII, as reflected by increased survival rates, improved clinical scores, and mitigated mucosal injury. The probiotic consortium treatment exhibited enhanced therapeutic effects at the histologic level compared with individual probiotic strains, although there was no corresponding improvement in survival rates and colon length. Moreover, the probiotic consortium stimulated intestinal stem cell proliferation and differentiation, enhanced the integrity of the intestinal epithelial barrier, and regulated redox imbalance and inflammatory responses in irradiated mice. Notably, the treatment induced a restructuring of the gut microbiota composition, particularly enriching short-chain fatty acid-producing bacteria. Metabolomic analysis revealed distinctive metabolic changes associated with the probiotic consortium, including elevated levels of anti-inflammatory and antiradiation metabolites. CONCLUSIONS: The probiotic consortium attenuated RIII by modulating the gut microbiota and metabolites, improving inflammatory symptoms, and regulating oxidative stress. These findings provide new insights into the maintenance of intestinal health with probiotic consortium supplementation and will facilitate the development of probiotic-based therapeutic strategies for RIII in clinical practice.

17.
ACS Appl Mater Interfaces ; 16(14): 17553-17562, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533759

RESUMO

The pore structure of carbon anodes plays a crucial role in enhancing the sodium storage capacity. Designing more confined pores in carbon anodes is accepted as an effective strategy. However, current design strategies for confined pores in carbon anodes fail to achieve both high capacity and initial Coulombic efficiency (ICE) simultaneously. Herein, we develop a strategy for utilizing the repeated impregnation and precarbonization method of liquid pitch to regulate the pore structure of the activated carbon (AC) material. Driven by capillary coalescence, the pitch is impregnated into the pores of AC, which reduces the specific surface area of the material. During the carbonization process, numerous pores with diameters less than 1 nm are formed, resulting in a high capacity and improved ICE of the carbon anode. Moreover, the ordered carbon layers derived from the liquid pitch also enhance the electrical conductivity, thereby improving the rate capability of as-obtained carbon anodes. This enables the fabricated material (XA-4T-1300) to have a high ICE of 91.1% and a capacity of 383.0 mA h g-1 at 30 mA g-1. The capacity retention is 95.5% after 300 cycles at 1 A g-1. This study proposes a practical approach to adjust the microcrystalline and pore structures to enhance the performance of sodium-ion storage in materials.

18.
Am J Pathol ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442803

RESUMO

Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influences NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of ficolin-A, but not ficolin-B, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in ficolin-A knockout mice. In vitro, neutrophils derived from Fcna-/- mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, gasdermin D knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas ficolin-2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D-mediated pyroptosis.

19.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475587

RESUMO

Nuclear Factor Y (NF-Y) is a class of heterotrimeric transcription factors composed of three subunits: NF-A, NF-YB, and NF-YC. NF-YC family members play crucial roles in various developmental processes, particularly in the regulation of flowering time. However, their functions in petunia remain poorly understood. In this study, we isolated four PhNF-YC genes from petunia and confirmed their subcellular localization in both the nucleus and cytoplasm. We analyzed the transcript abundance of all four PhNF-YC genes and found that PhNF-YC2 and PhNF-YC4 were highly expressed in apical buds and leaves, with their transcript levels decreasing before flower bud differentiation. Silencing PhNF-YC2 using VIGS resulted in a delayed flowering time and reduced chlorophyll content, while PhNF-YC4-silenced plants only exhibited a delayed flowering time. Furthermore, we detected the transcript abundance of flowering-related genes involved in different signaling pathways and found that PhCO, PhGI, PhFBP21, PhGA20ox4, and PhSPL9b were regulated by both PhNF-YC2 and PhNF-YC4. Additionally, the transcript abundance of PhSPL2, PhSPL3, and PhSPL4 increased only in PhNF-YC2-silenced plants. Overall, these results provide evidence that PhNF-YC2 and PhNF-YC4 negatively regulate flowering time in petunia by modulating a series of flowering-related genes.

20.
Am J Cardiovasc Dis ; 14(1): 21-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495408

RESUMO

OBJECTIVE: To evaluate the impact of varying dosages of Spironolactone on the short-term effectiveness and ventricular remodeling indicators in patients with Heart Failure of Ischemic Cardiomyopathy (HFIC). METHODS: A cohort of 141 HFIC patients, admitted to our hospital between October 2018 and February 2023, were enrolled for this study. Alongside the standard treatment for Chronic Congestive Heart Failure (CHF), these patients were randomly assigned to either a low-dose (20 mg/d, N=70) or a high-dose (60 mg/d, N=71) Spironolactone group. After four weeks, various parameters were assessed and compared within each group before and after the treatment. These parameters included echocardiographic indices (LVEF, LVESD, LVEDD, LVESV, and LVEDV), New York Heart Association (NYHA) cardiac function classification, ventricular remodeling markers (hs-CRP, TNF-α, NT-pro BNP, Gal-3, MMP-9, and TIMP-4), and the Six Minute Walk Distance (6MWD). RESULTS: Both low-dose and high-dose Spironolactone significantly improved LVEF and 6MWD in HFIC patients (P<0.05), as well as markedly reduced LVESD, LVEDD, LVESV, LVEDV, and NYHA cardiac function grades (P<0.05). The high-dose group exhibited the most pronounced improvements (P<0.05). High-dose Spironolactone was more effective in improving the clinical and total effective rate compared to the low-dose, significantly reducing treatment inefficacy (P<0.05). Both dosages significantly increased serum potassium levels within normal ranges. They also improved the expression of ventricular remodeling markers (hs-CRP, TNF-α, NT-pro BNP, Gal-3, MMP-9, and TIMP-4) in HFIC patients, with the high-dose group showing the most significant results (P<0.05). CONCLUSION: High-dose Spironolactone (60 mg/d) demonstrates superior efficacy over the low-dose (20 mg/d) in rapidly diminishing ventricular remodeling damage and enhancing cardiac function and clinical symptoms in HFIC patients over a short duration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...